Pięciokąt

W tym artykule zagłębimy się w fascynujący świat Pięciokąt, badając jego pochodzenie, ewolucję i dzisiejsze znaczenie. Pięciokąt jest przedmiotem zainteresowania i debaty od wielu lat, a jego wpływ rozciąga się na różne obszary społeczeństwa. Idąc tym tropem, szczegółowo przeanalizujemy różne aspekty, które sprawiają, że Pięciokąt jest tak ekscytującym tematem, od jego wpływu na kulturę popularną po jego znaczenie w polu akademickim i naukowym. Przygotuj się na odkrycie wszystkich fascynujących aspektów Pięciokąt i zanurz się w podróż, która doprowadzi Cię do lepszego zrozumienia jego znaczenia w dzisiejszym świecie.

Pięciokąt foremny

Pięciokąt (pięciobok) – wielokąt o pięciu bokach. Każdy pięciokąt ma pięć przekątnych. Szczególnym przypadkiem pięciokąta jest pięciokąt foremny.

Pięciokąt foremny

Pięciokąt foremny, pentagon[1]wielokąt foremny o pięciu bokach. Pięciokąty foremne są ścianami takich wielościanów jak m.in. dwunastościan foremny i dwudziestościan ścięty.

Własności

Kąty w pięciokącie foremnym

Pięciokąt foremny o boku długości ma następujące własności:

  • promień okręgu opisanego na pięciokącie foremnym ma długość
  • przekątna ma długość
gdzie oznacza złotą liczbę
  • wysokość ma długość

Konstruowalność

Możliwość skonstruowania przy użyciu cyrkla i linijki pięciokąta foremnego wynika z twierdzenia Gaussa-Wantzela (liczba 5 jest liczbą pierwszą Fermata). Poniżej przedstawiono cztery przykładowe algorytmy; opierają się głównie na własności, że bok pięciokąta foremnego jest złotą częścią jego przekątnej.

Konstrukcja 1.

Konstrukcja 1

Poniższą konstrukcję przedstawił H. W. Richmond w 1893 roku[2].

  1. Narysuj okrąg o środku S.
  2. Narysuj średnicę AB.
  3. Narysuj promień CS prostopadły do średnicy AB.
  4. Znajdź środek D odcinka CS i narysuj odcinek AD.
  5. Narysuj dwusieczną kąta ∠ADS, punkt jej przecięcia ze średnicą AB oznacz E.
  6. Narysuj prostą prostopadłą do AB przechodzącą przez E, punkt jej przecięcia z okręgiem oznacz F.
  7. Odcinek AF jest bokiem pięciokąta wpisanego w wyjściowy okrąg.

Konstrukcja 2.

Konstrukcja 2

Ptolemeusz w swoim dziele Almagest[3][4] opisuje sposób znalezienia długości boku pięciokąta wpisanego w zadany okrąg.

  1. Narysuj okrąg o środku S.
  2. Narysuj średnicę okręgu i prostopadły do niej promień BS.
  3. Znajdź środek A jednego z promieni zawierających się w średnicy.
  4. Narysuj łuk o środku A i promieniu AB, punkt jego przecięcia ze średnicą oznacz C.
  5. Odcinek BC ma długość boku pięciokąta wpisanego w wyjściowy okrąg.

Konstrukcja 3.

Konstrukcja 3

Metodę Ptolemeusza można rozbudować, uzyskując algorytm znalezienia wszystkich pięciu wierzchołków na okręgu.

  1. Narysuj okrąg o środku S.
  2. Narysuj prostą przechodzącą przez S i przecinającą okrąg w punktach A i B.
  3. Narysuj promień CS prostopadły do średnicy AB.
  4. Znajdź środek odcinka BS i oznacz go D.
  5. Narysuj łuk o środku D i promieniu CD, punkty jego przecięcia z prostą AB oznacz E i F.
  6. Narysuj łuk o środku C i promieniu CE, punkty jego przecięcia z okręgiem oznacz G i H.
  7. Narysuj łuk o środku C i promieniu CF, punkty jego przecięcia z okręgiem oznacz I i J.
  8. Punkty C, G, H, I, J są wierzchołkami pięciokąta foremnego.

Konstrukcja 4.

Konstrukcja 4

W poniższej konstrukcji wykorzystano okrąg Carlyle’a[3].

  1. Narysuj okrąg o środku O.
  2. Przez punkt O poprowadź prostą k, punkty jej przecięcia z okręgiem oznacz Q i P.
  3. Narysuj promień OA prostopadły do średnicy QP.
  4. Znajdź środek M promienia OQ.
  5. Narysuj okrąg o środku M przechodzący przez A; punkty jego przecięcia z prostą k oznacz V i W.
  6. Zakreśl łuk o środku W i promieniu OP, punkty jego przecięcia z wyjściowym okręgiem oznacz P1 i P4.
  7. Zakreśl łuk o środku V i promieniu OP, punkty jego przecięcia z wyjściowym okręgiem oznacz P2 i P3.
  8. Punkty P, P1, P2, P3, P4 są wierzchołkami pięciokąta foremnego.

Zobacz też

Przypisy

Linki zewnętrzne